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Abstract

With the aid of quaternion algebra, rotation in Euclidean space may be dealt with in a simple
manner. In this paper, we show that a unit timelike quaternion represents a rotation in the Minkowski
3-space. Also, we express Lorentzian rotation matrix generated with a timelike quaternion.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Quaternions were discovered by Sir William R. Hamilton in 1843 and the theory of
quaternions was expanded to include applications such as rotations in the early 20th cen-
tury. The most important property of the quaternions is that every unit quaternion represents
a rotation and this plays a special role in the study of rotations in three-dimensional vec-
tor spaces. There are various representations for rotations as orthonormal matrices, Euler
angles and unit quaternions in the Euclidean space. But to use the unit quaternions is a
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M. Özdemir, A.A. Ergin / Journal of Geometry and Physics 56 (2006) 322–336 323

more useful, natural, and elegant way to perceive rotations compared to other methods. A
comparison of these methods can be find in[6,7]. Until the middle of the 20th century,
the practical use of quaternions has been minimal in comparison with other methods. But,
currently, this situation has changed due to progress in robotics, animation and computer
graphics technology[6]. Also, quaternions are an efficient way understanding many aspects
of physics and kinematics. Today, quaternions are used especially in the area of computer
vision, computer graphics, animation, and to solve optimization problems involving the
estimation of rigid body transformations[7].

In this paper, we apply split quaternions to rotations in the Minkowski 3-space. A similar
relation to the relationship between quaternions and rotations in the Euclidean space exists
between split quaternions and rotations in the Minkowski 3-space. Split quaternions are
identified with the semi-Euclidean spaceE4

2. Besides, the vector part of split quaternions was
identified with the Minkowski 3-space[2]. Thus, it is possible to do with split quaternions
many of the things one ordinarily does in vector analysis by using Lorentzian inner and
vector products. We give some properties of the split quaternions in Section3. But, before
this, we remind some concepts of quaternions and the Lorentzian space. In the following
sections, we demonstrate how timelike split quaternions are used to perform rotations in
the Minkowski 3-space.

2. Preliminary

Quaternion algebraH is an associative, non-commutative division ring with four basic
elements{1, i, j, k} satisfying the equalitiesi2 = j2 = k2 = −1 andi ∗ j = k, j ∗ k = i,
k ∗ i = j,j ∗ i = −k, k ∗ j = −i, i ∗ k = −j [10]. Quaternions are a generalization of com-
plex numbers. Also, the quaternion algebra is the even subalgebra of the Clifford algebra
of the three-dimensional Euclidean space. The Clifford algebraC�(En

p) = C�n−p,p for the
n-dimensional non-degenerate vector spaceEn

p having an orthonormal base{e1, e2, . . . , en}
with the signature (p, n − p) is the associative algebra generated by 1 and{ei} with satisfy-

ing the relationseiej + ejei = 0 for∀i �= j ande2
i =

{
−1, if i = 1, 2, . . . , p

1, if i = p + 1, . . . , n
. The Clifford

algebraC�n−p,p has the basis{ei1ei2 . . . eik : 1 ≤ i1 < i2 < . . . < ik ≤ n}. That is, the divi-
sion algebra of quaternionsH is isomorphic with the even subalgebraC�+

3,0 of the Clifford
algebraC�3,0 such thatC�+

3,0 has the basis{1, e2e3 → j, e1e3 → k, e1e2 → i} [9].
We write any quaternion in the formq = (q1, q2, q3, q4) = q1 + q2i + q3j + q4k or

q = Sq + Vq where the symbolsSq = q1 and �Vq = q2i + q3j + q4k denote the scalar and
vector parts ofq. If Sq = 0 thenq is called pure quaternion. The quaternion productq ∗ q′ =
(q1 + q2i + q3j + q4k) ∗ (q′

1 + q′
2i + q′

3j + q′
4k) is obtained by distributing the terms on

the right as in ordinary algebra, except that the order of the units must be preserved and
then replacing each product of units by the quantity given above.

The conjugate of the quaternionq is denoted byKq, and defined asKq = Sq − �Vq.
The norm of a quaternionq = (q1, q2, q3, q4) is defined by

√
q ∗ Kq = √

Kq ∗ q =√
q2

1 + q2
2 + q2

3 + q2
4 and is denoted byNq and we say thatq0 = q/Nq is unit quater-
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nion whereq �= 0. The set of unit quaternions is denoted byH1. Every unit quaternion can
be written in the formq0 = cosθ + �ε0 sinθ where�ε0 is a unit vector satisfying the equality
�ε0 ∗ �ε0 = −1 and is called the axis of the quaternion[6,7,10].

With the aid of the quaternion algebra, rotations in Euclidean space may be dealt with in
a simple and elegant manner. Ifq andr are any non-scalar quaternions, thenr′ = qrq−1 is
a quaternion whose norm and scalar part are the same as forr. The vector�Vr′ is obtained
by revolving �Vr conically about�Vq through twice the angle ofq. Thus, ifq = Nq(cosθ +
�ε0 sinθ), �Vr′ is obtained by revolving�Vr conically about�ε0 through the angle 2θ [1,6].

Now, let us give some basic notions of the Lorentzian geometry. The Minkowski 3-space
E

3
1 is the Euclidean spaceE3 provided with the inner product〈�u, �v〉L = −u1v1 + u2v2 +

u3v3 where�u = (u1, u1, u3), �v = (v1, v2, v3) ∈ E3. We say that a Lorentzian vector�u inE3
1

is spacelike, lightlike or timelike if〈�u, �u〉L > 0, 〈�u, �u〉L = 0 or 〈�u, �u〉L < 0, respectively.
The norm of the vector�u ∈ E3

1 is defined by‖�u‖ = √|〈�u, �u〉L|. Also, for the timelike vectors
in the Minkowski 3-space, we say that a timelike vector is future pointing or past pointing if
the first component of the vector is positive or negative, respectively, the Lorentzian vector
product�u ∧L �v of �u and�v is defined as follows:

�u ∧L �v =

∣∣∣∣∣∣∣
−e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣
Moreover, for the vectors�x, �y, �z, �w in the Minkowski 3-space, the equalities

�x ∧L (�y ∧L �z) = 〈�x, �y〉L�z − 〈�x, �z〉L�y (1)

〈�x ∧L �y, �z ∧L �w〉L = −
∣∣∣∣∣ 〈�x, �z〉L 〈�x, �w〉L
〈�y, �z〉L 〈�y, �w〉L

∣∣∣∣∣ (2)

are satisfied. Proof of these identities can be done using vector analysis. The hyperbolic and
Lorentzian unit spheres are

H2
0 = {�a ∈ E3

1 : 〈�a, �a〉L = −1} and S2
1 = {�a ∈ E3

1 : 〈�a, �a〉L = 1}

respectively. There are two components ofH2
0 passing through (1, 0, 0) and (−1, 0, 0) a

future pointing hyperbolic sphere and a past pointing hyperbolic unit sphere, and they are
denoted byH2+

0 andH2−
0 , respectively.

Theorem 1. Let �u and �v be vectors in the Minkowski 3-space.

(i) If �u and �v are future pointing (or past pointing) timelike vectors, then �u ∧L �v is a
spacelike vector. 〈�u, �v〉L = −‖�u‖‖�v‖ coshθ and ‖�u ∧L �v‖ = ‖�u‖‖�v‖ sinhθ where θ is
the hyperbolic angle between �u and �v.

(ii) If �u and �v are spacelike vectors satisfying the inequality |〈�u, �v〉L| < ‖�u‖‖�v‖, then
�u ∧L �v is timelike, 〈�u, �v〉L = ‖�u‖‖�v‖ cosθ and ‖�u ∧L �v‖ = ‖�u‖‖�v‖ sinθ where θ is
the angle between �u and �v.
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(iii) If �u and �v are spacelike vectors satisfying the inequality |〈�u, �v〉L| > ‖�u‖‖�v‖, then
�u ∧L �v is spacelike, 〈�u, �v〉L = −‖�u‖‖�v‖ coshθ and ‖�u ∧L �v‖ = ‖�u‖‖�v‖ sinhθ where
θ is the hyperbolic angle between �u and �v.

(iv) If �u and �v are spacelike vectors satisfying the equality |〈�u, �v〉L| = ‖�u‖‖�v‖, then �u ∧L �v
is lightlike.

For further Lorentzian concepts see[3,4,8].

3. Split quaternions

The semi-Euclidean 4-space with 2-index is represented withE
4
2. The inner product of

this semi-Euclidean space is

〈�u, �v〉
E

4
2

= −u1v1 − u2v2 + u3v3 + u4v4

and we say that�u is timelike, spacelike or lightlike if〈�u, �u〉
E

4
2

< 0, 〈�u, �u〉
E

4
2

> 0 and

〈�u, �u〉
E

4
2

= 0 for the vector�u in E4
2, respectively. Split quaternionŝH are identified with the

semi-Euclidean spaceE4
2. Besides, the subspace ofĤ consisting of pure split quaternions

Ĥ0 is identified with the Minkowski 3-space[2]. Thus, it is possible to do with split quater-
nions many of the things one ordinarily does in vector analysis by using Lorentzian inner
and vector product.

Split quaternion algebra is an associative, non-commutative non-division ring with four
basic elements{1, i, j, k} satisfying the equalitiesi2 = −1, j2 = k2 = 1 andi ∗ j = k, j ∗
k = −i, k ∗ i = j, j ∗ i = −k, k ∗ j = i, i ∗ k = −j. Also, similar to the division algebra of
quaternions, the split quaternion algebra is the even subalgebra of the Clifford algebra of the
three-dimensional Lorentzian space. That is, the non-division algebra of split quaternions
Ĥ is isomorphic with the even subalgebraC�+

2,1 of the Clifford algebraC�2,1 whereC�+
2,1

has the basis{1, e2e3 → i, e3e1 → k, e1e2 → j} [9].
Scalar and vector parts of split quaternionq are denoted bySq = q1 and �Vq =

q2i + q3j + q4k, respectively. The split quaternion product of two quaternionsp =
(p1, p2, p3, p4) andq = (q1, q2, q3, q4) is defined as

p ∗ q = p1q1 + 〈�Vp, �Vq〉L + p1 �Vq + q1 �Vp + �Vp ∧L
�Vq

where〈, 〉L and∧L are Lorentzian inner product and vector product, respectively. Also, the
split quaternion product may be written as

p ∗ q =




p1 −p2 p3 p4

p2 p1 p4 −p3

p3 p4 p1 −p2

p4 −p3 p2 p1







q1

q2

q3

q4



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If Sq = 0 thenq is called pure split quaternion. Split quaternion product of two pure split
quaternionsp = p2i + p3j + p4k andq = q2i + q3j + q4k is

p ∗ q = 〈�Vp, �Vq〉L + �Vp ×L
�Vq = −p2q2 + p3q3 + p4q4 +




−i j k

p2 p3 p4

q2 q3 q4


 . (3)

Let q = (q1, q2, q3, q4) = Sq + �Vq be a split quaternion. The conjugate of a split quater-
nion, denotedKq, is defined asKq = Sq − �Vq. The conjugate of the sum of quater-
nions is the sum of their conjugates. Since the vector parts ofq and Kq differ only in

sign, we haveIq
def= q ∗ Kq = Kq ∗ q. Also, for pure split quaternions, since changing the

sign of the determinant in(3) is equivalent to interchanging the second and third rows,
K( �Vq ∗ �Vq′) = �Vq′ ∗ �Vq. Now, we can define timelike, spacelike and lightlike quaternions,
since the set of split quaternionsĤ is identified with semi-Euclidean spaceE4

2.

Definition 1. We say that a split quaternionq is spacelike, timelike or lightlike, ifIq < 0,
Iq > 0 or Iq = 0, respectively, whereIq = q ∗ Kq = Kq ∗ q. Obviously,−Iq = −q2

1 −
q2

2 + q2
3 + q2

4 is identified with〈q, q〉
E

4
2

for the split quaternionq = (q1, q2, q3, q4).

Definition 2. The norm ofq = (q1, q2, q3, q4) is defined as

Nq =
√

|q2
1 + q2

2 − q2
3 − q2

4|

If Nq = 1 thenq is called unit split quaternion andq0 = q/Nq is a unit split quaternion
for Nq �= 0. Also, spacelike and timelike quaternions have multiplicative inverses and they
hold the propertyq ∗ q−1 = q−1 ∗ q = 1. And they are constructed byq−1 = Kq

Iq
. Lightlike

quaternions have no inverses.

Theorem 2. Split quaternions satisfy the following properties

(i) q ∗ (r ∗ s) = (q ∗ r) ∗ s,
(ii) q ∗ (r + s) = q ∗ r + q ∗ s,

(iii) K(q ∗ r) = Kr ∗ Kq,
(iv) Iq∗r = IqIr,
(v) N(q ∗ r) = NqNr,

(vi) �Vq is parallel to �Vr if and only if q ∗ r = r ∗ q, for ∀q, r, s ∈ Ĥ.

As a conclusion of this theorem the set of spacelike quaternions is not a group since
it is not closed under multiplication. That is, the product of two spacelike quaternions is
timelike. Whereas, the set of timelike quaternions denoted by

TĤ = {q = (q1, q2, q3, q4) : q2, q3, q4, q1 ∈ R, Iq > 0}
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forms a group under the split quaternion product. Also, the set of unit timelike quater-
nions represented byTĤ1 and identified with semi-Euclidean sphereS3

2 = {�a ∈ E4
2 :

〈�a, �a〉
E

4
2

= 1} is a subgroup ofTĤ.

The vector part of any spacelike quaternion is spacelike sinceq2
1 + q2

2 − q2
3 − q2

4 < 0
and 0< q2

1 < −q2
2 + q2

3 + q2
4 = 〈�Vq, �Vq〉L. But, vector part of any timelike quaternion can

be spacelike, timelike and null. Because of that we examine timelike quaternions whether
the vector part is spacelike, timelike or null inE3

1. This is important especially for polar
forms and rotations.

Now, let us express any split quaternion in polar form similar to quaternions and complex
numbers. In the rest of this paper, we will examine especially timelike quaternions since
the set of timelike quaternions form a group and polar form changes in the case the vector
part of timelike quaternion is timelike or spacelike.

(i) Every spacelike quaternion can be written in the form

q = Nq(sinhθ + �ε0 coshθ)

where sinhθ = q1
Nq

, coshθ =
√

−q2
2+q2

3+q2
4

Nq
and�ε0 = q2i+q3j+q4k√

−q2
2+q2

3+q2
4

is a spacelike unit

vector inE3
1.

(ii) Every timelike quaternion with spacelike vector part can be written in the form

q = Nq(coshθ + �ε0 sinhθ)

where coshθ = q1
Nq

, sinhθ =
√

−q2
2+q2

3+q2
4

Nq
, �ε0 = q2i+q3j+q4k√

−q2
2+q2

3+q2
4

is a spacelike unit vec-

tor inE3
1 and�ε0 ∗ �ε0 = 1.

For example, for the timelike quaternionq = (2, 1, 0, 2), the polar form isq =
coshθ + �ε0 sinhθ = 2 + (1,0,2)√

3

√
3.

(iii) Every timelike quaternion with timelike vector part can be written in the form

q = Nq(cosθ + �ε0 sinθ)

where cosθ = q1
Nq

, sinθ =
√

q2
2−q2

3−q2
4

Nq
, �ε0 = q2i+q3j+q4k√

q2
2−q2

3−q2
4

is a timelike unit vector in

E
3
1 and�ε0 ∗ �ε0 = −1.

For example, for the timelike quaternionq = (1, 2, 1, 1), the polar form isq =√
3(cosθ + �ε0 sinθ) = √

3
(

1√
3

+ (2,1,1)√
2

√
2√
3
.
)

.

Considering that a vector in the Lorentzian space are a split quaternion with scalar part
is zero, we express following theorems.
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Theorem 3. Every unit timelike quaternion q = coshθ + �ε0 sinhθ with spacelike vector
part can be expressed in the form �v ∗ �u−1 such that θ is the hyperbolic angle between
Lorentzian vectors �u and�v satisfying one of the following conditions:

(i) �u and �v are unit timelike vectors which are perpendicular to spacelike unit vector �ε0.
(ii) �u and �v are unit spacelike vectors which satisfy the inequality |〈�u, �v〉L| > 1 and per-

pendicular to spacelike unit vector �ε0 [5].

For example, the unit timelike quaternionq = (3, −8, −6, −6) with spacelike vector
part can be expressed as�v ∗ �u−1 such that�u = (9, 8, 4) and�v = (3, 2, 2) are unit future
pointing timelike vectors satisfying the equalities coshθ = −〈�u, �v〉L = 3, �ε0 = �u∧L�v

‖�u∧L�v‖ =
1√
8
(−8, −6, −6) and sinhθ = √

8.
Also, for the unit timelike quaternionq = (−9, 0, −4, 8) with spacelike vector part can

be expressed as�v ∗ �u−1 such that�u = (2, 2, 1) and�v = (−2, 2, 1) are unit spacelike vectors
satisfying the inequality|〈�u, �v〉L| > 1 and the equalities�ε0 = �u∧L�v

‖�u∧L�v‖ = 1√
80

(0, −4, 8) and

coshθ = −〈�u, �v〉L = 0.

Theorem 4. Every unit timelike quaternion q = cosθ + �ε0 sinθ with timelike vector part
can be expressed in the form �u ∗ �v where �u and �v are unit spacelike vectors which are
perpendicular to a timelike unit vector �ε0 and θ is the angle between �u and �v [5].

For example, the unit timelike quaternionq = (0, −3, −2, −2) with timelike vector part
can be expressed as�u ∗ �v such that�u = (2, 2, 1) and�v = (2, 1, 2) are unit spacelike vectors
satisfying the inequality|〈�u, �v〉L| < 1 and the equalities�ε = (−3, −2, −2) = �u ∧L �v and
cosθ = 〈�u, �v〉L = 0.

One of the corollaries of these theorems is the fact that each great hyperbolical arc of the
unit hyperboloidH2

0 corresponds to a timelike quaternion with spacelike vector part. And
using this corollary, we proved sine and cosine laws for hyperbolical triangles on theH2+

0
in [5].

4. Rotations with split quaternions in Lorentzian space

There are a lot of methods used to represent rotations like orthonormal matrices, Eu-
ler angles and quaternions. Quaternions is the most useful method to represent rotations.
If we compare to orthonormal matrices, there are some constraints as each colon of an
orthonormal matrix must be unit vector and must be perpendicular to each other. These
constraints make it difficult to construct an orthonormal matrix using nine numbers. But,
we can construct easily a rotation orthonormal matrix using a unit quaternion. That is,
only four numbers are enough to represent a rotation such that there is only one constraint
which is that the norm of the quaternion must be equal to 1. This makes it possible to find
solutions to some optimization problems involving rotations. Such problems are hard to
solve when using orthonormal matrices to represent rotations because of the six non-linear
constraints to enforce orthonormality, and the additional constraint det(R) = +1. Every unit
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quaternion represents a rotation in the Euclidean space. Ifθ = 0, then this identity rotation
is represented by the quaternionq = (1, 0, 0, 0). Also, the rotation of 180◦, θ = π about
the unit vector�a (called a flip) represented by the quaternionq = (0, �a). Using a quaternion
q = (q1, q2, q3, q4), we can generate a rotation matrix with

R =




q2
1 + q2

2 − q2
3 − q2

4 −2q1q4 + 2q2q3 2q1q3 + 2q2q4

2q2q3 + 2q4q1 q2
1 − q2

2 + q2
3 − q2

4 2q3q4 − 2q2q1

2q2q4 − 2q3q1 2q2q1 + 2q3q4 q2
1 − q2

2 − q2
3 + q2

4


 (4)

for the given rotation in the Euclidean 3-space. In terms of orthonormal matrices, the
rotations about the standard coordinate axesx, y, z through an angleθ are given by

Rqx =




1 0 0

0 cosθ − sinθ

0 sinθ cosθ


 , Rqy =




cosθ 0 sinθ

0 1 0

− sinθ 0 cosθ


 and

Rqz =




cosθ − sinθ 0

sinθ cosθ 0

0 0 1




And, we can represent these rotations about the standard coordinate axes with the unit quater-
nionsqx = (

cosθ
2, sin θ

2, 0, 0
)
, qy = (

cosθ
2, 0, sin θ

2, 0
)

andqz = (
cosθ

2, 0, 0, sin θ
2

)
, re-

spectively.
Each rotation of Euclidean 3-space is represented by a orthogonal rotation matrix with

respect to standard basis. These matrices form the three-dimensional special orthogonal
groupSO(3). Moreover, the functionf : S3 � H1→SO(3) which sendsq = (q1, q2, q3, q4)
to matrix(4) is a homomorphism of groups. The kernel off is {±1} so that the rotation matrix
corresponds to the pair±q of the unit quaternion. In particular,SO(3) is isomorphic to the
quotient groupH1�{±1} from the first isomorphism theorem.

That is, unit quaternions are very important for representing rotations in the Euclidean
3-space. Is it possible to represent rotations in the Minkowski 3-space with unit timelike
quaternions? The answer is yes. Now, let us demonstrate how unit timelike quaternions
are used to perform rotations in the Minkowski 3-space and show that every unit timelike
quaternion represents a rotation.

Theorem 5. Let q and r be timelike quaternions. Then, the transformation R : TĤ→ TĤ

defined by Rq(r) = q ∗ r ∗ q−1 is a timelike quaternion whose norm and scalar are the same
as for r. Also, Rq is linear.

Proof. The scalar and norm of theRq(r) are S(Rq(r)) = S(q ∗ r ∗ q−1) = S(q ∗ q−1 ∗
r) = Sr and N(Rq(r)) = Nq ∗ Nr ∗ Nq−1 = Nq ∗ Nr ∗ Nq = Nr. Also, as a conclu-
sion of Theorem 2(iv)the transformationRq(r) = q ∗ r ∗ q−1 is a a timelike quater-
nion. To see thatRq(r) is linear, let a be real valued scalar and letr and r′
be split quaternions, thenRq(ar + r′) = q ∗ (ar + r′) ∗ q−1 = (q ∗ ar ∗ q−1) + (q ∗ r′ ∗
q−1) = a(q ∗ r ∗ q−1) + (q ∗ r′ ∗ q−1) = aRq(r) + Rq(r′). �
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Since scalar part of the timelike quaternionr does not change under the transformation
R, we will examine only that how vector part of timelike quaternionr = (Sr, �Vr) changes
under the transformationR. Thus, we can interpret that rotation of a vector in the Minkowski
3-space using the split quaternion productq ∗ �Vr ∗ q−1. If q = (q1, q2, q3, q4) is a timelike
quaternion, using the transformation law

(q ∗ �Vr ∗ q−1)i =
3∑

j=1

Rij( �Vr)j

the corresponding rotation matrix can be found as

Rq =




q2
1 + q2

2 + q2
3 + q2

4 2q1q4 − 2q2q3 −2q1q3 − 2q2q4

2q2q3 + 2q4q1 q2
1 − q2

2 − q2
3 + q2

4 −2q3q4 − 2q2q1

2q2q4 − 2q3q1 2q2q1 − 2q3q4 q2
1 − q2

2 + q2
3 − q2

4


 (5)

wherer = (Sr, �Vr). We can see that all rows of this matrix are orthogonal in the Lorentzian
mean. In additionally, if we take a unit timelike quaternionq ∈ TĤ1, we obtain an orthogonal
rotation matrix in Minkowski 3-space. Each rotation of Minkowski 3-space is represented by
a rotation matrix with respect to standard basis. These matrices form the three-dimensional
special orthogonal group

SO(1, 2)= {R ∈ M3(R) : Rt




−1 0 0

0 1 0

0 0 1


R =




−1 0 0

0 1 0

0 0 1


 and detR = 1}.

Moreover, the functionϕ : S3
2 � TĤ1→SO(1, 2) which sendsq = (q1, q2, q3, q4) to matrix

R given in(5) is a homomorphism of groups. The kernel ofϕ is {±1} so that the rotation
matrix corresponds to the pair±q of the unit quaternion. In particular,SO(1, 2) is isomorphic
to the quotient groupTĤ1�{±1} from the first isomorphism theorem. In another words,
for every rotation in the Minkowski 3-spaceE3

1, there are two unit timelike quaternions
that determine this rotation. These timelike quaternions areq and−q. Also, automorphism
group of split quaternionŝH is isomorphic withSO(1, 2) [11].

Therefore, a timelike quaternionq = (q1, q2, q3, q4) is equivalent to a 3× 3 orthogonal
rotation matrixRq given by(5). This matrix represents a rotation in the Minkowski 3-space
under the condition that detRq = 1. This is possible with unit timelike quaternions. Also,
causal character of vector part of the timelike quaternionq is important. If the vector part ofq
is timelike or spacelike then the rotation angle is spherical or hyperbolical, respectively. We
can see reasons of these cases after the following theorems. Firstly, we give some examples
to these conditions.



M. Özdemir, A.A. Ergin / Journal of Geometry and Physics 56 (2006) 322–336 331

For example, for the unit timelike quaternionq =
(√

3
2 , 1

2, 0, 0
)

with timelike vector

part, the rotation matrix is

Rq =




1 0 0

0
1

2
−

√
3

2

0

√
3

2

1

2




Here, the unit timelike quaternionq =
(√

3
2 , 1

2, 0, 0
)

represents rotation through an angle

120◦ about the timelike axisi = (1, 0, 0).
Also, for the unit timelike quaternionp = (2, 1, 0, 2) with spacelike vector part, the

rotation matrix is

Rp =




9 8 −4

8 7 −4

4 4 −1




andp represents a rotation through an hyperbolic angle 2θ about the spacelike axisε =(
1√
3
, 0, 2√

3

)
such that coshθ = 2 and sinhθ = √

3.

Conversely, for a given 3× 3 orthonormal rotation matrix in the Minkowski 3-space, we
can find the corresponding unit timelike quaternions by using the formulas

q2
1 = 1

4
(1 + Rq1,1 + Rq2,2 + Rq3,3), q2 = 1

4q1
(Rq3,2 − R2,3),

q3 = − 1

4q1
(Rq1,3 + Rq3,1) q4 = 1

4q1
(Rq2,1 + Rq1,2)

forq1 �= 0. Whenq1 = 0, we can find corresponding unit timelike quaternion using the equa-
tionsq3 = − 1

2q2
Rq1,2,q4 = − 1

2q2
Rq1,2 andq2

2 = 1 + q2
3 + q2

4. It is enough to determine the

timelike quaternion since 0< q2
1 + q2

2 − q2
3 − q2

4. Whenq1 = 0, we get 0< q2
2 − q2

3 − q2
4

or q2 �= 0.
In additionally, for a rotation matrixRq ∈ SO(1, 2), we can find a unit vector�ε defining

the axis of rotationRq is a unit eigenvector for the eigenvalue +1. Then, using the equations
Rqi,i and cosh2 θ

2 − sinh2 θ
2 = 1 or cos2 θ

2 + sin2 θ
2 = 1, we find the angleθ such thatRq

rotates about�ε through that angle. Thus, the pair of unit timelike quaternions corresponding
to Rq is then± (

cosθ
2 + �ε sin θ

2

)
or ± (

coshθ
2 + �ε sinh θ

2

)
with respect to axis of rotation

�ε is timelike or spacelike, respectively.
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For example, let us take the rotation matrixA ∈ SO(1, 2).

A =




9

4
−2

1

4
−1 1 −1

−7

4
2

1

4




Eigenvector for the eigenvalue +1 is the rotation axis�ε. So, we find the rotation axis as
�ε = (2, 1, −2). Since�ε is a spacelike vector, corresponding unit timelike quaternions pair are
in the form±(coshθ

2 + �ε sinh θ
2). Thus, using the equationA1,1 = q2

1 + q2
2 + q2

3 + q2
4 = 9

4

andq = ± (
coshθ

2 + (2, 1, −2) sinhθ
2

)
, we findq = ±

(
3√
8
, 2√

8
, 1√

8
, −2√

8

)
.

If we take the rotation matrixB ∈ SO(1, 2).

B =




2

√
2

2
− 1 −

√
2

2
− 1

√
2

2
+ 1 −1

2
−√

2 − 1

2

1 −
√

2

2

√
2 − 1

2
−1

2




In this case, rotation axis�ε =
(

2√
2
, 1√

2
, 1√

2

)
is a timelike vector, then corresponding

unit timelike quaternions pair forB are in the form± (
cosθ

2 + �ε sin θ
2

)
. Therefore, us-

ing B1,1 = 2 andq = ± (
cosθ

2 + �ε sin θ
2

)
, we find sinθ

2 = ±
√

2
2 and coshθ2 = ±

√
2

2 . That
is, the rotation matrixB rotates a vector about the timelike axis�ε through 90◦.

Theorem 6. Let q = coshθ + �ε0 sinhθ be a timelike quaternion with spacelike vector part
and �ε be a Lorentzian vector. Then the transformation Rq(�ε) = q ∗ �ε ∗ q−1 is a rotation
through hyperbolic angle 2θ about the spacelike axis �ε0.

Proof. Firstly, let us choose a dextral set{�ε0, �ε1, �ε2} satisfying the equalities�ε0 ∧L �ε1 = �ε2,
�ε2 ∧L �ε0 = −�ε1, �ε1 ∧L �ε2 = �ε0, such that�ε1 is a timelike vector in the plane of the�ε0 and
�ε with 〈�ε0, �ε1〉L = 0. Thus, we can write as�ε = coshτ�ε0 + sinhτ�ε1 or �ε = sinhτ�ε0 +
coshτ�ε1 with respect to�ε is spacelike or timelike, respectively. Now, to computeRq(�ε) =
q ∗ �ε ∗ q−1, let us find how�ε0 and�ε1 change under the transformationRq.

Since�Vq is parallel to�ε0, we haveq ∗ �ε0 = �ε0 ∗ q andRq(�ε0) = q ∗ �ε0 ∗ q−1 = �ε0 ∗ q ∗
q−1 = �ε0. Also,

Rq(�ε1) = q ∗ �ε1 ∗ q−1 = (coshθ + �ε0 sinhθ) ∗ �ε1 ∗ (coshθ − �ε0 sinhθ)

= �ε1 cosh2 θ − coshθ sinhθ(�ε1 ∗ �ε0) + coshθ sinhθ(�ε0 ∗ �ε1)

−(�ε0 ∗ �ε1) ∗ �ε0 sinh2 θ
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is found. Additionally, we know that�ε1 ∗ �ε0 = �ε1 ∧L �ε0 for the orthogonal, pure quaternions
and�u ∧L (�v ∧L �w) = 〈�u, �v〉L �w − 〈�u, �w〉L�v is satisfied for the Lorentzian vectors�u, �v, �w.
Then, since (�ε0 ∗ �ε1) ∗ �ε0 = (�ε0 ∧L �ε1) ∧L �ε0 = −�ε1, we find

Rq(�ε1) = �ε1 cosh 2θ + �ε2 sinh 2θ.

It means that�ε is rotated through hyperbolic angle 2θ about�ε0 by the transformation
Rq(�ε). �

Therefore, a unit timelike quaternionq with spacelike vector part represents a rotation
of three-dimensional non-lightlike Lorentzian vector by an angle hyperbolic angle 2θ about
the axis ofq.

As an example for this theorem, let us take the unit timelike quaternionq = coshθ +
k sinhθ with spacelike vector part and spacelike vectorε in the planei andk. Then,�ε =
coshτk + sinhτi whereτ the hyperbolic angle between�ε andk.

Since�Vq is parallel tok, Rq(k) = q ∗ k ∗ q−1 = k. Also,

Rq(i) = q ∗ i ∗ q−1 = (coshθ + k sinhθ) ∗ i ∗ (coshθ − k sinhθ)

and using split quaternion product, we obtain

Rq(i) = i cosh 2θ + j sinh 2θ.

It means thatRq(i) is a timelike vector obtained by revolvingi aboutk through an hyperbolic
angle 2θ in the positive sense. Hence, the spacelike vector�ε = coshτk + sinhτi is trans-
formed into the spacelike vectorRq(�ε) = coshτk + sinhτRq(i) under the transformation
Rq .

In the Minkowski 3-space, the rotations about the standard spacelike coordinate axes
j = (0, 1, 0) andk = (0, 0, 1) through the hyperbolic angleθ are represented with the
orthonormal matrices

Rqj =




coshθ 0 sinhθ

0 1 0

sinhθ 0 coshθ


 and Rqk

=




coshθ sinhθ 0

sinhθ coshθ 0

0 0 1




or the unit timelike quaternionsqj = (
coshθ

2, 0, − sinh θ
2, 0

)
and qk = (

coshθ
2, 0, 0,

sinh θ
2

)
.

Theorem 7. Let q = cosθ + �ε0 sinθ be a timelike quaternion with timelike vector part and
�ε be a Lorentzian vector. Then the transformation Rq(�ε) = q ∗ �ε ∗ q−1 is a rotation through
2θ about the timelike axis �ε0.

Proof. Let us choose a dextral set satisfying the equalities�ε0 ∧L �ε1 = �ε2, �ε2 ∧L �ε0 = �ε1,
�ε1 ∧L �ε2 = −�ε0, such that�ε1 is a spacelike vector in the plane of the timelike vector�ε0



334 M. Özdemir, A.A. Ergin / Journal of Geometry and Physics 56 (2006) 322–336

and�ε with 〈�ε0, �ε1〉L = 0. Thus, we can write as�ε = coshτ�ε0 + sinhτ�ε1 or �ε = sinhτ�ε0 +
coshτ�ε1 with respect to�ε is timelike or spacelike, respectively. Now, to computeRq(�ε) =
q ∗ �ε ∗ q−1, let us find how�ε0 and�ε1 change under the transformationR.

Since�Vq is parallel to�ε0, we haveq ∗ �ε0 = �ε0 ∗ q andq ∗ �ε0 ∗ q−1 = �ε0 ∗ q ∗ q−1 = �ε0.
Also, we can find asRq(�ε1) = �ε1 cos 2θ + �ε2 sin 2θ using(4) and equalities in the above.

It means that�ε is rotated through the angle 2θ about�ε0 by the transformationRq(�ε). �

Thus, a unit timelike quaternionq with timelike vector part represents a rotation of
three-dimensional non-lightlike Lorentzian vector by an angle 2θ about the axis ofq.

As an example for this theorem, let us take the unit timelike quaternionq = cosθ + i sinθ

with timelike vector part and unit timelike vectorε in the planesi andj. Then,�ε = coshτi +
sinhτj whereτ is the hyperbolic angle between�ε andi.

Since�Vq is parallel toi, Rq(i) = q ∗ i ∗ q−1 = i. Also,

Rq(j) = q ∗ j ∗ q−1 = (cosθ + i sinθ) ∗ j ∗ (cosθ − i sinθ)

and using split quaternion product, we obtain

Rq(j) = j cos 2θ + k sin 2θ.

It means thatRq(j) is a vector obtained by revolvingj about i through an angle 2θ in
the positive sense. Hence, the timelike vector�ε = coshτi + sinhτj is transformed into the
timelike vectorRq(�ε) = coshτi + sinhτRq(j) under the transformationRq (seeFig. 1).

Fig. 1. A unit timelike quaternionq with timelike vector part represents a rotation of three-dimesional non-lightlike
Lorentzian vector by an angle 2θ about the axis ofq.
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The rotation about the standard timelike coordinate axisi = (1, 0, 0) through the angle
θ is represented with the orthonormal matrix

Rqi =




1 0 0

0 cosθ − sinθ

0 sinθ cosθ




or the unit timelike quaternionqi = (
cosθ

2, sin θ
2, 0, 0

)
.

5. Some conclusions and remarks

(i) A timelike quaternion rotates a non-lightlike vector to a non-lightlike vector. Even
the causal character of the non-lightlike vector is preserved. That is, a timelike vec-
tor transforms into a timelike vector and a spacelike vector also transforms into a
spacelike vector under the transformationRq [8].

(ii) All rotations about a timelike axis or a spacelike axis can be expressed with the
unit timelike quaternions with timelike vector part or unit timelike quaternions with
spacelike vector part, respectively.

(iii) Since q−1q( )q−1q = 1( )1, the inverse of a timelike quaternionq, q−1 rotates the
same number of degree asq, but the axis points in the opposite direction.

(iv) Since (−q)−1 = −q−1, the rotationsRq = q( )q−1 andR(−q) = (−q)( )(−q)−1 are
the same.

(v) For the unit timelike quaternions, the rotationp followed by the rotationq is equivalent
to the single rotationq ∗ p. Even, whilep and q represent rotations the anglesα

and β about the timelike vectors�u and �v, respectively,q ∗ p may be represent a
rotation through the hyperbolic angleγ about a spacelike vector�w. If the p andq
correspond to operatorsRp = p ∗ ( ) ∗ p−1 andRq = q ∗ ( ) ∗ q−1, the succession of
rotationsp andq corresponds to the operatorq ∗ p ∗ ( ) ∗ p−1 ∗ q−1 = (q ∗ p) ∗ ( ) ∗
(q ∗ p)−1 = Rq∗p.

(vi) If p = cosα + u sinα andq = cosβ + u sinβ are unit timelike quaternions, then the
operatorsRp andRq effect rotations of 2α and 2β about timelike vector�u, respec-
tively.

q ∗ p = (cosβ + u sinβ) ∗ (cosα + u sinα)

= (cosβ cosα − sinα sinβ) + u(cosβ sinα + cosα sinβ)

= cos(α + β) + u sinh(α + β).

Therefore, the succession of rotationsp andq corresponds to theRq∗p and effect
rotations of 2(α + β) about�u. That is, the resulting rotation is equivalent to the single
rotationq ∗ p = cos(α + β) + u sinh(α + β).

(vii) If p = coshα + u sinhα and q = coshβ + u sinhβ are unit timelike quaternions,
then the operatorsRp andRq effect rotations of hyperbolic 2α and 2β about spacelike
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vector�u, respectively.

q ∗ p = (coshβ + u sinhβ) ∗ (coshα + u sinhα)

= (coshβ coshα+ sinhα sinhβ) + u(coshβ sinhα+ coshα sinhβ)

= cosh(α + β) + u sinh(α + β).

So, the succession of rotationsp andq corresponds to theRq∗p and effect rotations of
hyperbolic 2(α + β) about�u. That is, the resulting rotation is equivalent to the single
rotationq ∗ p = cos(α + β) + u sinh(α + β).

(viii) More generally, the succession of rotationsq1, . . . , qn is equivalent to the single
rotationqn ∗ qn−1 ∗ . . . ∗ q1 for timelike quaternions.

These conclusions and remarks can be seen also using the corresponding rotation matrices
of the timelike quaternions.
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