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Abstract

With the aid of quaternion algebra, rotation in Euclidean space may be dealt with in a simple
manner. In this paper, we show that a unit timelike quaternion represents a rotation in the Minkowski
3-space. Also, we express Lorentzian rotation matrix generated with a timelike quaternion.
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1. Introduction

Quaternions were discovered by Sir William R. Hamilton in 1843 and the theory of
quaternions was expanded to include applications such as rotations in the early 20th cen-
tury. The mostimportant property of the quaternions is that every unit quaternion represents
a rotation and this plays a special role in the study of rotations in three-dimensional vec-
tor spaces. There are various representations for rotations as orthonormal matrices, Euler
angles and unit quaternions in the Euclidean space. But to use the unit quaternions is a
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more useful, natural, and elegant way to perceive rotations compared to other methods. A
comparison of these methods can be find6¥]. Until the middle of the 20th century,

the practical use of quaternions has been minimal in comparison with other methods. But,
currently, this situation has changed due to progress in robotics, animation and computer
graphics technologi6]. Also, quaternions are an efficient way understanding many aspects
of physics and kinematics. Today, quaternions are used especially in the area of computer
vision, computer graphics, animation, and to solve optimization problems involving the
estimation of rigid body transformatiofig].

In this paper, we apply split quaternions to rotations in the Minkowski 3-space. A similar
relation to the relationship between quaternions and rotations in the Euclidean space exists
between split quaternions and rotations in the Minkowski 3-space. Split quaternions are
identified with the semi-Euclidean spd@é Besides, the vector part of split quaternions was
identified with the Minkowski 3-spad@]. Thus, it is possible to do with split quaternions
many of the things one ordinarily does in vector analysis by using Lorentzian inner and
vector products. We give some properties of the split quaternions in S&ctiut, before
this, we remind some concepts of quaternions and the Lorentzian space. In the following
sections, we demonstrate how timelike split quaternions are used to perform rotations in
the Minkowski 3-space.

2. Preliminary

Quaternion algebrl is an associative, non-commutative division ring with four basic
elements(1, i, j, k} satisfying the equalitie® = j2 =k = -1 andi* j =k, jxk =i,
kxi=j,j*xi=—k kx*j=—i,ixk=—j[10]. Quaternions are a generalization of com-
plex numbers. Also, the quaternion algebra is the even subalgebra of the Clifford algebra
of the three-dimensional Euclidean space. The Clifford alg€l(&’)) = C¢,—, , for the
n-dimensional non-degenerate vector sd@(peaving anorthonormal bagey, e», . .., e,}
with the signatureg, n — p) is the associative algebra generated by 1{afjdvith satisfy-

-1ifi=1,2,...,p .
] . The Clifford
Lifi=p+1,....n

algebraCt,_, , hasthe basig; e;, ...¢; 11 <i1 <i2 <... <i <n}. Thatis, the divi-
sion algebra of quaterniotfi is isomorphic with the even subalgeh[fa?to of the Clifford
algebraC¢3 o such thaCEIO has the basifl, exez — j, e1e3 — k, e1e2 — i} [9].

We write any quaternion in the formp = (g1, g2, 93, 9a) = q1 + q2i + q3j + qak or
g = Sq + Vg where the symbol§g = ¢1 andVq = ¢2i + g3 + g4k denote the scalar and
vector parts of. If Sg = 0thenyis called pure quaternion. The quaternion produet’ =
(g1 + g2i + q3j + qak) * (¢ + g5i + g5j + g4k) is obtained by distributing the terms on
the right as in ordinary algebra, except that the order of the units must be preserved and
then replacing each product of units by the quantity given above.

The conjugate of the quaternianis denoted byKg, and defined akq = Sqg — Vg.
The norm of a quaternioy = (q1, g2, g3, q4) is defined by /g * Kq = /Kq*q =

\/qf + 45+ g3+ 45 and is denoted byg and we say thago = ¢/Ng is unit quater-

ing the relations;e; + eje; = OforVi # jandei2 = {
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nion whereg # 0. The set of unit quaternions is denotedHby Every unit quaternion can
be written in the formyg = cosd + £o sind wheregg is a unit vector satisfying the equality
g0 % 80 = —1 and is called the axis of the quaterniér7,10]

With the aid of the quaternion algebra, rotations in Euclidean space may be dealt with in
a simple and elegant mannerglndr are any non-scalar quaternions, thée= grg 1 is
a quaternion whose norm and scalar part are the same asTfoe vectorV’ is obtained
by revolving Vr conically aboutVq through twice the angle of. Thus, ifg = Ng(cost +
gosing), Vr' is obtained by revolving’r conically abougg through the angle[1,6].

Now, let us give some basic notions of the Lorentzian geometry. The Minkowski 3-space
E$ is the Euclidean spadé® provided with the inner producfi, o), = —ugv1 + upvz +
ugvzwherei = (u1, u1, us), v = (v1, vz, v3) € E3. We say that a Lorentzian vectoin E3
is spacelike, lightlike or timelike ifu, u); > O, (u,u); = 0 or (u, u); < O, respectively.

The norm of the vectar € Ef isdefined byju| = +/|(u, u)|. Also, for the timelike vectors

in the Minkowski 3-space, we say that a timelike vector is future pointing or past pointing if
the first component of the vector is positive or negative, respectively, the Lorentzian vector
producti Az v of u andv is defined as follows:

—e1r ez €3
u AL V= ul up U3
V1 v2 U3

Moreover, for the vectors, v, z, w in the Minkowski 3-space, the equalities
XAL(VALZ) = (X, )1z — (X, 2Ly (1)
*2L (X uwyL

- N 2
6}7 Z)L ()I» w>L ( )

(XALY,ZAL W) = —

are satisfied. Proof of these identities can be done using vector analysis. The hyperbolic and
Lorentzian unit spheres are

H:={aeBE}: (@a)y =-1) and S?={aecE3: (a,a), =1}

respectively. There are two componentsflg passing through (D, 0) and 1,0, 0) a
future pointing hyperbolic sphere and a past pointing hyperbolic unit sphere, and they are
denoted byHs+ and HZ ™, respectively.

Theorem 1. Let i and U be vectors in the Minkowski 3-space.

() If u and ¥ are future pointing (or past pointing) timelike vectors, then i AL V is a
spacelike vector. (i1, V) = —||u||||0|| cosh® and ||ii Ar V|| = ||u||||D]| Sinh& where 6 is
the hyperbolic angle between it and V.

(i) If i and v are spacelike vectors satisfying the inequality |(ii, D) | < ||i||||?|, then
i AL D is timelike, (i, D)1, = ||ii]||D]| coSO and |ii Ap Dl = [li][[[7] SiNG where 6 is
the angle between i and .
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(i) If i and v are spacelike vectors satisfying the inequality |(ii, D) | > ||i||||?|, then

i ALV is spacelike, (it, V) = —||u||||0]| cosh and ||it Ar V|| = ||u||||D]| Sinh& where
0 is the hyperbolic angle between i and v.

(iv) Ifu and ¥ are spacelike vectors satisfying the equality |(it, 0) | = ||u |||, thenu Ap ¥
is lightlike.

For further Lorentzian concepts sigg4,8]

3. Split quaternions

The semi-Euclidean 4-space with 2-index is representedIEbéiIlThe inner product of
this semi-Euclidean space is

(i, 71)]E421 = —u1v1 — U2V + U3v3 + Uavs

and we say thak is timelike, spacelike or lightlike if(u, ﬁ)Eg <0, (u, ﬁ)Eg > 0 and
(u, ﬁ)Eg = 0 for the vectoii in E3, respectively. Split quaternioiisare identified with the

semi-Euclidean spad@‘z‘. Besides, the subspacelfifconsisting of pure split quaternions

H is identified with the Minkowski 3-spad@]. Thus, it is possible to do with split quater-
nions many of the things one ordinarily does in vector analysis by using Lorentzian inner
and vector product.

Split quaternion algebra is an associative, non-commutative non-division ring with four
basic elementél, i, j, k} satisfying the equalitie® = —1, j2 = k? = 1 andi % j = k, j *
k=—ikxi=j, jxi=—k,kxj=1i%k=—j. Also, similarto the division algebra of
guaternions, the split quaternion algebra is the even subalgebra of the Clifford algebra of the
three-dimensional Lorentzian space. That is, the non-division algebra of split quaternlons
His isomorphic with the even subalget(fﬁ*l of the Clifford algebraC¢s 1 whereCé
has the basi§l, esez — i, eze1 — k, ere2 — j}[9].

Scalar and vector parts of split quaternignare denoted bySg = ¢1 and \7q =
qo2i + q3j + qak, respectively. The split quaternion product of two quaternigns
(P1, P2, p3, pa) andq = (q1, g2, g3, q4) is defined as

prqg=pig1+ (Vp. V@)L + p1Va+qVp+ Vp AL Vg

where(, ) andA are Lorentzian inner product and vector product, respectively. Also, the
split quaternion product may be written as

p1 —p2 p3 P4 q1
p2 p1 ps —p3 q2
pP3 p4 p1 —p2 q3
p4s —p3 p2 p1 q4

pP*q=
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If S¢ = 0theng is called pure split quaternion. Split quaternion product of two pure split
quaterniong = poi + p3j + psk andg = g2i + q3j + qak is

—ij k
pxq=1(Vp, V@)L +Vpx1 Vq=—pag2+ paqz+ paga+ | p2 p3 pa|. (3)
92 493 q4

Letg = (91, 92, 93, q4) = Sq + \7q be a split quaternion. The conjugate of a split quater-
nion, denotedKy, is defined askq = Sqg — Vq. The conjugate of the sum of quater-
nions is the sum of their conjugates. Since the vector parig arid Kq differ only in

sign, we havd, d_Efq x Kqg = Kq * q. Also, for pure split quaternions, since changing the
sign of the determinant i3) is equivalent to interchanging the second and third rows,
K(Vq * Vq) = Vq * Vq Now, we can define timelike, spacelike and lightlike quaternions,
since the set of split quaternlomls identified with semi-Euclidean spaﬁé.

Definition 1. We say that a split quaternianis spacelike, timelike or Iightlike, if, <0,
1,5 > 0 or 1‘5 = 0, respectively, wherd, = g * Kg = Kq * q. Obviously, —I, = —¢% —
q5 + q3 + ¢ is identified with(g, q)E4 for the split quaterniog = (g1, g2, g3, q4).

Definition 2. The norm ofg = (g1, g2, ¢3, q4) is defined as

Ng =\ + % — 3~ 3

If Ng =1 theng is called unit split quaternion angh = ¢/Ngq is a unit split quaternion

for Ng # 0. Also, spacelike and timelike quaternions have muItipIicative inverses and they
hold the property « g~ = g~ x ¢ = 1. And they are constructed gy = K" . Lightlike
guaternions have no inverses.

Theorem 2. Split quaternions satisfy the following properties

(i) g*(rxs)=(g=*r)x*s,

(i) gx(r+s)=gxr+qg=*s,

(i) K(gxr) = Kr* Kq,

(V) Igsr = Igly,

(v) N(q*r) NgNr,

(Vi) Vq is parallel to Vr if and only if g % r = r % q, for ¥q, r, s € H.

As a conclusion of this theorem the set of spacelike quaternions is not a group since
it is not closed under multiplication. That is, the product of two spacelike quaternions is
timelike. Whereas, the set of timelike quaternions denoted by

={q = (91,92, 93,94) 92,93, 94,91 € R, I, > 0}
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forms a group under the split quaternion product. Also, the set of unit timelike quater-
nions represented bﬂl‘]ﬁll and identified with semi-Euclidean spheS§ ={ace IE‘Z‘ :
(a, Zl)Eg = 1} is a subgroup of'H.

The vector part of any spacelike quaternion is spacelike Sjﬁuequ - q% — qﬁ <0
andO0< q% < —q% + q% + qﬁ = (\7q, f/q)L. But, vector part of any timelike quaternion can
be spacelike, timelike and null. Because of that we examine timelike quaternions whether
the vector part is spacelike, timelike or nuII]Ef. This is important especially for polar
forms and rotations.

Now, let us express any split quaternion in polar form similar to quaternions and complex
numbers. In the rest of this paper, we will examine especially timelike quaternions since
the set of timelike quaternions form a group and polar form changes in the case the vector
part of timelike quaternion is timelike or spacelike.

(i) Every spacelike quaternion can be written in the form

g = Ng(sinh + £p coshy)

. \/ —a5+a5+
where sinto = 4L, costy = qz q3 A andgo = 210 s g spacelike unit
7(12+q3+(14
vector inE3.
(ii) Every timelike quaternion with spacelike vector part can be written in the form

q = Ng(coshd + £g sinhg)

. N T T .
where cost = 4L, sinh6 = Vit  Bo = 243tk s 5 spacelike unit vec-

Ng \/ —d5+a5+dg
tor in E3 andz * g0 = 1.

For example, for the timelike quaternign= (2, 1, 0, 2), the polar form is; =
coshd + ggsinhd = 2 + (17%2)\/5
(iif) Every timelike quaternion with timelike vector part can be written in the form

g = Ng(cosh + £ sinb)

2_.2_ 2
where co® = 1‘{,— sing = qu;iz 94 3o = ‘12’*‘13’:‘14" is a timelike unit vector in

qz 43— ‘14

E% andEo * 50 =-1.

For example, for the timelike quaterniap= (1,2, 1, 1), the polar form isq =

V3(cosd + Eg sinb) = /3 (% + (27\1@1):% .

Considering that a vector in the Lorentzian space are a split quaternion with scalar part
is zero, we express following theorems.
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Theorem 3. Every unit timelike quaternion g = coshd + £q Sinhé with spacelike vector
part can be expressed in the form ¥ x i~ such that 6 is the hyperbolic angle between
Lorentzian vectors it andv satisfying one of the following conditions:

() u and V are unit timelike vectors which are perpendicular to spacelike unit vector €.
(i) # and ¥ are unit spacelike vectors which satisfy the inequality |(ii, 0)1| > 1 and per-
pendicular to spacelike unit vector £q [5].

For example, the unit timelike quaternign= (3, —8, —6, —6) with spacelike vector
part can be expressed as i~ such thati = (9, 8, 4) andv = (3, 2, 2) are unit future
pointing timelike vectors satisfying the equalities césh — (i, v); = 3,20 = ”zﬁizﬂ =
%(—8, —6, —6) and sinlp = /8.

Also, for the unit timelike quaternion = (-9, 0, —4, 8) with spacelike vector part can
be expressed as« i1 such thafi = (2, 2, 1) andv = (-2, 2, 1) are unit spacelike vectors

. . . . - - g o M D l
satisfying the inequality{u, v),; | > 1 and the equalitiegy = TZ%ZII = ﬁ)(o, —4,8)and
coshd = —(u, v); = 0.

Theorem 4. Every unit timelike quaternion q = C0SA + £q SinG with timelike vector part
can be expressed in the form i x v where i and ¥ are unit spacelike vectors which are
perpendicular to a timelike unit vector €g and 0 is the angle between i and v [5].

For example, the unit timelike quaternigr= (0, —3, —2, —2) with timelike vector part
can be expressed as: v such thali = (2, 2, 1) andv = (2, 1, 2) are unit spacelike vectors
satisfying the inequality(, 7). | < 1 and the equalities = (-3, -2, —2) =i AL v and
cosd = (u, v); =0.

One of the corollaries of these theorems is the fact that each great hyperbolical arc of the
unit hyperboloing corresponds to a timelike quaternion with spacelike vector part. And
using this corollary, we proved sine and cosine laws for hyperbolical triangles dlszfhe
in [5].

4. Rotations with split quaternions in Lorentzian space

There are a lot of methods used to represent rotations like orthonormal matrices, Eu-
ler angles and quaternions. Quaternions is the most useful method to represent rotations.
If we compare to orthonormal matrices, there are some constraints as each colon of an
orthonormal matrix must be unit vector and must be perpendicular to each other. These
constraints make it difficult to construct an orthonormal matrix using nine numbers. But,
we can construct easily a rotation orthonormal matrix using a unit quaternion. That is,
only four numbers are enough to represent a rotation such that there is only one constraint
which is that the norm of the quaternion must be equal to 1. This makes it possible to find
solutions to some optimization problems involving rotations. Such problems are hard to
solve when using orthonormal matrices to represent rotations because of the six non-linear
constraints to enforce orthonormality, and the additional constraint det(R) = +1. Every unit
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guaternion represents a rotation in the Euclidean spaée=10, then this identity rotation
is represented by the quaternign= (1, 0, 0, 0). Also, the rotation of 180 6 = = about
the unit vector (called a flip) represented by the quaternjoa (0, ). Using a quaternion
q = (g1, g2, g3, g4), We can generate a rotation matrix with

G- a5 —2q194+29293 29193 + 29244
R = | 292q3 + 2qaq1 @ —a5+4d5— a5 29394 — 24291 4)
24294 — 2q3q1 24291 + 2934 ¢ —q5—d5+4;

for the given rotation in the Euclidean 3-space. In terms of orthonormal matrices, the
rotations about the standard coordinate axes z through an anglé are given by

1 0 0 cosd 0 sind
R, = |0 cos® —sind |, R, = |0 10 and
0 sind coso —sind 0 cow

cos? —sind 0]
R, = |sinfd cos® O
0 0 1

And, we canrepresentthese rotations about the standard coordinate axes with the unit quater-
nionsgq, = (cos4, sin§, 0,0), ¢, = (cos§, 0, sin§, 0) andg, = (cos§, 0,0, sin§), re-
spectively.

Each rotation of Euclidean 3-space is represented by a orthogonal rotation matrix with
respect to standard basis. These matrices form the three-dimensional special orthogonal
groupSO(3). Moreover, the functiorf : S3 >~ Hi— SO(3) which sendg = (g1, 92, 43, qa)
to matrix(4) is a homomorphism of groups. The kernefef{1} so that the rotation matrix
corresponds to the paitg of the unit quaternion. In particulasO(3) is isomorphic to the
quotient grougH {41} from the first isomorphism theorem.

That is, unit quaternions are very important for representing rotations in the Euclidean
3-space. Is it possible to represent rotations in the Minkowski 3-space with unit timelike
quaternions? The answer is yes. Now, let us demonstrate how unit timelike quaternions
are used to perform rotations in the Minkowski 3-space and show that every unit timelike
guaternion represents a rotation.

Theorem 5. Let g and r be timelike quaternions. Then, the transformation R : TH — TH
defined by Ry(r) = q * r * g~ Yis a timelike quaternion whose norm and scalar are the same
as for r. Also, Ry is linear.

Proof. The scalar and norm of th&,(r) are S(R,(r)) = S(g*r+q~1) = S(g*q 1 %
r)=Sr and N(R,(r)) = Ngx Nr+ Ng~! = Ng* Nrx Nqg = Nr. Also, as a conclu-
sion of Theorem 2(iv)the transformationR,(r) = gxrxqg-1is a a timelike quater-
nion. To see thatR,(r) is linear, leta be real valued scalar and let and r’
be split quaternions, theR,(ar +r') = g* (ar + 1) x gt = (gxarx g 1) + (g * 1 *
g D=algxrxqg Y+ (gxr«qg )= aRy(r) + Ry(r). O
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Since scalar part of the timelike quaterniodoes not change under the transformation
R, we will examine only that how vector part of timelike quaternios (Sr, \7r) changes
under the transformatioR. Thus, we can interpret that rotation of a vector in the Minkowski
3-space using the split quaternion prodquetf/r x g L. If ¢ = (g1, g2, g3, q4) is a timelike
guaternion, using the transformation law

3
(q*Vrsq™i=> Rij(Vr);
=1

the corresponding rotation matrix can be found as

@ +q5+45+43 29194 — 29243 —2q193 — 29244
R, = | 292q3 + 2qaq1 @2 —4q5— a5 +4a5 —2q93q4 — 29291 (5)
24294 — 2q3q1 24241 — 29344 & —B+d3-4;

wherer = (Sr, \7r). We can see that all rows of this matrix are orthogonal in the Lorentzian
mean. In additionally, if we take a unittimelike quaternioa TH, we obtain an orthogonal
rotation matrix in Minkowski 3-space. Each rotation of Minkowski 3-space is represented by
a rotation matrix with respect to standard basis. These matrices form the three-dimensional
special orthogonal group

-1 00 -1 00
SO(1,2)={ReM3(R):R"|0 1 O|R=|0 1 0| and deR=1}.
0 0 1 0O 01

Moreover, the functiop : 3 ~ TH; — SO(1, 2) which sendg = (g1, ¢2. g3, ga) to matrix

R given in(5) is a homomorphism of groups. The kernelgofs {+1} so that the rotation
matrix corresponds to the paliiy of the unit quaternion. In particula¥0(1, 2) isisomorphic

to the quotient grouﬂ‘}ﬁll/{il} from the first isomorphism theorem. In another words,
for every rotation in the Minkowski 3—spa®f, there are two unit timelike quaternions
that determine this rotation. These timelike quaterniong ared—gq. Also, automorphism
group of split quaternionl is isomorphic withSO(1, 2) [11].

Therefore, a timelike quaternign= (g1, g2, ¢3, qa) is equivalent to a X 3 orthogonal
rotation matrixR, given by(5). This matrix represents a rotation in the Minkowski 3-space
under the condition that d&, = 1. This is possible with unit timelike quaternions. Also,
causal character of vector part of the timelike quatergisimportant. If the vector part of
is timelike or spacelike then the rotation angle is spherical or hyperbolical, respectively. We
can see reasons of these cases after the following theorems. Firstly, we give some examples
to these conditions.
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For example, for the unit timelike quaternign= (‘2[ 3.0, 0) with timelike vector
part, the rotation matrix is

10 O
o L V3
Ry = 2 2
3 1
o V3 1
2 2

Here, the unit timelike quaterniap= (§ % 0, O) represents rotation through an angle

120’ about the timelike axis= (1, 0, 0).
Also, for the unit timelike quaterniop = (2, 1, 0, 2) with spacelike vector part, the
rotation matrix is

—4
R,=|8 7 -4
4 4 -1

andp represents a rotation through an hyperbolic angl@lout the spacelike axis=

(} 0, }) such that cosh = 2 and sinty = /3.
Conversely, for a given & 3 orthonormal rotation matrix in the Minkowski 3-space, we
can find the corresponding unit timelike quaternions by using the formulas

1
@(Rq&Z — R233),

1
@(qul + Ry1.2)

1
= Z(l + Ry1.1+ Ry2.2 + Ry33), q2 =

1
g3 = —@(qu,s +Rp31) qa=

forq1 # 0. Whenyg; = 0, we canfind corresponding unittimelike quaternion using the equa-
tionsgs = —T;Zqu’z,Q4 = —qul,z andg3 = 1+ g3 + ¢3. Itis enough to determine the

timelike quaternion since & ¢? + g5 — ¢3 — g3. Wheng1 = 0, we get 0< ¢35 — ¢3 — ¢3
orgz # 0.

In additionally, for a rotation matrik, € SO(1, 2), we can find a unit vectardefining
the axis of rotatiorR, is a unit eigenvector for the eigenvalue +1. Then, using the equations
Ryii and cosR § — smh2 ¢ =1orcog§ +sin? § =1, we find the angl® such thatr,
rotates abouZI'through that angle Thus the pair of unlt timelike quaternions corresponding
to R is then- (cos§ + Esin%) or + (cosh‘9 + £sinh%) with respect to axis of rotation

gis tlmellke or spacelike, respectlvely
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For example, let us take the rotation mattixe SO(1, 2).

9 1

= _2 =

4 4
A=|-1 1 -1

7 1

-~ 2 =

4 4

Eigenvector for the eigenvalue +1 is the rotation a&iSo, we find the rotation axis as
£ = (2, 1, —2). Sinceg is a spacelike vector, corresponding unit timelike quaternions pair are

in the form=£(cosh§ + £ sinh ). Thus, using the equatiofy 1 = ¢% + g3 + 3+ ¢% = 3

andg = + (coshf + (2, 1, —2)sinh%), we findg = + (% ] %)
If we take the rotation matri8 € SO(1, 2).

) V2o Y2
2 2

2 2 2
1_£ f_} _}
2 2 2

In this case, rotation axig§ = (% % %) is a timelike vector, then corresponding

unit timelike quaternions pair foB are in the form+ (cos% + Esing). Therefore, us-
ing B11 = 2 andg = % (cos§ + £sin%), we find sin§ = i@ and cosHt = i@. That
is, the rotation matrix3 rotates a vector about the timelike a%ithrough 90.

Theorem 6. Let g = coshd + £g Sinh6 be a timelike quaternion with spacelike vector part
and & be a Lorentzian vector. Then the transformation R,(€) = q * € * ¢~ is a rotation
through hyperbolic angle 20 about the spacelike axis g.

Proof. Firstly, letus choose a dextral &g, £1, £2} satisfying the equalitieg A g1 = €2,
g0 AL 0 = —£1, €1 AL €2 = £, Such thak; is a timelike vector in the plane of thig and
£ with (8g, 1)z, = 0. Thus, we can write as = coshrgg + sinhtg, or & = sinhtég +
coshré; with respect tc is spacelike or timelike, respectively. Now, to compRigz) =
q * € * ¢~ 1, let us find howg andz; change under the transformati@y.

SinceVgq is parallel toéo, we havey % &g = g0 * g andR,(g0) = g *x o * g~
g~ 1 =%o. Also,

L=%pxqgx

Ry(1) = g * 81 % ¢~ = (coshh + &g Sinh6) * €1 * (coshd — &g sinhé)
= &1 coslt 6 — coshd sinhd(1 * o) + coshp sinhd(Zg * £1)
—(80 * £1) * Eo SNt 6
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is found. Additionally, we knowthat, * g9 = 1 A &o forthe orthogonal, pure quaternions
andu Ap (VAL w) = (i, v)pw — (i, w) v is satisfied for the Lorentzian vectaisv, w.
Then, sincedp * £1) * 80 = (50 AL €1) AL €0 = —&1, We find

R,(81) = €1cosh @ + €;sinh D.

It means that is rotated through hyperbolic angl® aboutgg by the transformation
R,(). O

Therefore, a unit timelike quaternignwith spacelike vector part represents a rotation
of three-dimensional non-lightlike Lorentzian vector by an angle hyperbolic adglbdut
the axis ofg.

As an example for this theorem, let us take the unit timelike quaterpiercoshd +
k sinho with spacelike vector part and spacelike veetdn the planei andk. Then,g =
coshrk + sinhti wherer the hyperbolic angle betweérandk.

SinceVyq is parallel tok, R,(k) = g * k * g1 = k. Also,

R,(i) = g% i+ g~ = (coshd + k sinh6) * i * (coshd — k sinh6)
and using split quaternion product, we obtain
R,(i) = icosh @ + jsinh .

Itmeans thak, (i) is atimelike vector obtained by revolvirigboutk through an hyperbolic
angle 2 in the positive sense. Hence, the spacelike vettercoshzk + sinhi is trans-
formed into the spacelike vectd,(¢) = coshtk + sinhtR,(i) under the transformation
R, .
In the Minkowski 3-space, the rotations about the standard spacelike coordinate axes
j=1(0,1,0) andk = (0, 0, 1) through the hyperbolic angle are represented with the
orthonormal matrices

coshd 0 sinhd cosh sinhd O
R, =10 10 and R, = [sinhg coshv O
sinh 0 coshy 0 0 1

or the unit timelike quaterniong; = (cosh, 0, —sinh§, 0) and g = (cosh§, 0,0,
sinh%).

Theorem 7. Let g = C0S + £q SiNG be a timelike quaternion with timelike vector part and
€ be a Lorentzian vector. Then the transformation Ry(€) = q * € gL is a rotation through
20 about the timelike axis €.

Proof. Let us choose a dextral set satisfying the equaliiies; ¢1 = €2, €2 AL g0 = €1,
£1 AL 82 = —&g, such tha; is a spacelike vector in the plane of the timelike vecipr
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andz with (g, 1)1 = 0. Thus, we can write &= coshrgg + sinhté; oré = sinhtég +
coshré; with respect tc is timelike or spacelike, respectively. Now, to compRigz) =
g % €% g1, let us find howgg andz; change under the transformatin
SinceVqis parallel toég, we havey * 89 = 8o * gandg * 89 x g1 = 8o x g x g~ L = Zo.
Also, we can find a®,(¢1) = €1 cos D + &2 sin 2 using(4) and equalities in the above.
It means thaf is rotated through the anglé® 2bouteg by the transformatio®, (£). O

1

Thus, a unit timelike quaterniog with timelike vector part represents a rotation of
three-dimensional non-lightlike Lorentzian vector by an anglal@out the axis of.

As an example for thistheorem, let us take the unittimelike quatetniercosd + i sinf
with timelike vector part and unit timelike vectoin the plane$and;. Then g = coshri +
sinhzj wherer is the hyperbolic angle betweérandi.

SinceVyq is parallel toi, R,(i) = g * i x ¢~* = i. Also,

1

Ry(j) =g = jxq = (COSH +isinb) * j * (CosH — i sinb)

and using split quaternion product, we obtain
Ry(j) = jcosD + ksin .
It means thatR,(j) is a vector obtained by revolvingabouti through an angle 2in

the positive sense. Hence, the timelike veéter coshri + sinhzj is transformed into the
timelike vectorR,(¢) = coshri + sinhtR,(j) under the transformatioR, (seeFig. 1).

>k

J Rq()

Fig. 1. Aunittimelike quaterniogwith timelike vector part represents a rotation of three-dimesional non-lightlike
Lorentzian vector by an angle 2bout the axis of.
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The rotation about the standard timelike coordinate axgq1, 0, 0) through the angle
0 is represented with the orthonormal matrix

10 0
R; = |0 cos¥ —sinf
0 sind coso

or the unit timelike quaterniog; = (cos$, sin§, 0, 0).

5. Some conclusions and remarks

(i) A timelike quaternion rotates a non-lightlike vector to a non-lightlike vector. Even
the causal character of the non-lightlike vector is preserved. That is, a timelike vec-
tor transforms into a timelike vector and a spacelike vector also transforms into a
spacelike vector under the transformatign[8].

(i) All rotations about a timelike axis or a spacelike axis can be expressed with the
unit timelike quaternions with timelike vector part or unit timelike quaternions with
spacelike vector part, respectively.

(iii) Since g71¢()g ¢ = 1()1, the inverse of a timelike quaternigng ! rotates the
same number of degree @sbut the axis points in the opposite direction.

(iv) Since (¢)~1 = —¢71, the rotationsR, = ¢()g~t and R(_y) = (—q)()(—q)~* are
the same.

(v) Forthe unittimelike quaternions, the rotatjofollowed by the rotatiow is equivalent
to the single rotatiory * p. Even, whilep and ¢ represent rotations the angles
and B about the timelike vectorg8 and v, respectivelyg = p may be represent a
rotation through the hyperbolic angjeabout a spacelike vectas. If the p andg
correspond to operatoRs, = p () * pL andR, =g * () * g1, the succession of
rotationsp andq corresponds to the operatpi p + () * p Lk g1 = (g * p) * () *

(g% p)il = Ryp-

(vi) If p=cosu + usineandg = cosp + u sin g are unit timelike quaternions, then the
operatorsk, and R, effect rotations of @ and 28 about timelike vector:, respec-
tively.

g * p = (CoSB + u sinB) * (cosa + u Sing)
= (cosB cosa — sina sinB) + u(cosp sina + cosa sin B)
= cosg + B) + u sinhfy + B).
Therefore, the succession of rotatiomsindg corresponds to th&,., and effect
rotations of 2¢ + B) aboutii. That is, the resulting rotation is equivalent to the single
rotationg * p = cosgr + B) + u sinhf + B).

(vii) If p = cosha + u sinhe and g = coshp + u sinhg are unit timelike quaternions,
then the operator®, andR, effect rotations of hyperbolicci2and 28 about spacelike
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vectoru, respectively.

q * p = (coshB + u sinhB) * (cosha + u sinha)
= (coshB cosha+ sinha sinh ) + u(coshpg sinha+ cosha sinhg)
= coshf + B) + u sinhf@ + B).

So, the succession of rotatiopgindg corresponds to thR,., and effect rotations of
hyperbolic 2¢ + B) aboutii. That is, the resulting rotation is equivalent to the single
rotationg * p = cosg + B) + u sinhf + B).

(viii) More generally, the succession of rotatiogs ..., g, is equivalent to the single
rotationg, * g,—1 * ... * q1 for timelike quaternions.

These conclusions and remarks can be seen also using the corresponding rotation matrices
of the timelike quaternions.
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